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Abstract
It is proved that for general, not necessarily periodic, quasi one-dimensional
systems the band position operator corresponding to an isolated part of the
energy spectrum has discrete spectrum and its eigenfunctions have the same
spatial localization as the corresponding spectral projection. As a consequence,
an eigenbasis of the band position operator provides a basis of optimally
localized (generalized) Wannier functions for quasi one-dimensional systems,
and this proves the strong Marzari–Vanderbilt conjecture. If the system has
some translation symmetries (e.g. usual translations, screw transformations),
they are ‘inherited’ by the Wannier basis.

PACS numbers: 73.21.Cd, 71.15.Ap, 71.20.−b, 71.23.An, 02.30.5a

1. Introduction

Wannier functions (WF) were introduced by Wannier in 1937 [1] as bases in subspaces of
states corresponding to energy bands in solids, bases consisting of exponentially localized
functions (localized orbitals). For periodic crystals they are defined as Fourier transform
of Bloch functions of the corresponding bands. Since then WF proved to be a key tool in
quantum theory of solids as they provide a tight-binding description of the electronic band
structure of solids. At the conceptual level they lay at the foundation of all effective mass-
type theories, e.g., the famous Peierls–Onsager substitution describing the dynamics of Bloch
electrons in the presence of an external magnetic field (see, e.g., [2]and references therein).
At the quantitative level, especially after the seminal paper by Marzari and Vanderbilt [3], WF
become an effective tool in ab initio computational studies of electronic properties of materials.
Moreover during the last decades WF proved to be an essential ingredient in the study of low
dimensional nanostructures such as linear chains of atoms, nanowires, nanotubes, etc (see, e.g.,
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[4, 5]). In particular, WF are essential for most formulations of transport phenomena using
real space Green’s function method based on Landauer–Büttiker formalism both at rigorous
[6] and computational levels [7, 4].

A few remarks are in order here. The first one is that realistic low dimensional systems
are not strictly one- (two)-dimensional but rather quasi one- (two)-dimensional and one has
to take into account the (restricted) motion along perpendicular directions. This adds specific
features such as for example the screw symmetry in nanotubes and nanowires is absent in
strictly one-dimensional systems. The second one is that realistic systems, due to the presence
of defects, boundaries, randomness, etc, do not have usually full translation symmetry and
this asks for a theory of WF not based on Bloch formalism. Finally, let us recall that contrary
to a widespread opinion (see, e.g., the discussion in [2]) that WF always exist for isolated
band in solids, this is not true. More precisely, in more than one dimension there are subtle
topological obstructions and these are related to the QHE [8–10]: a band for which WF are
known to exist gives no contribution to the quantum Hall current. It is then crucial to have
rigorous proofs of the existence of exponentially localized WF.

For one-dimensional periodic systems the existence of exponentially localized WF has
been proved by Kohn in his classic paper [11] about analytic structure of Bloch functions.
An extension of Kohn analysis to quasi one-dimensional systems has been done recently
by Prodan [12]. As for higher dimensions it was known since the work by des Cloizeaux
[13, 14] that there are obstructions to the existence of exponentially localized WF and that
these obstructions are of topological origin (more precisely as explicitly stated in [15] these
obstructions are connected to the topology of a vector bundle of orthogonal projections). The
fact that for simple bands of time-reversal invariant systems the obstructions are absent was
proved by des Cloizeaux [13, 14] under the additional condition of the existence of center of
inversion and by Nenciu [15] in the general case. While the proofs in [13–15] did not use
the vector bundle theory it was suggested in [2, 16] that the characteristic classes theory in
combination with some deep results in the theory of analytic functions of several complex
variables (Oka principle) can be used to give alternative proof of the above results and to extend
them to composite bands of time-reversal symmetric systems. This has been substantiated
recently in [17, 10] where the existence of exponentially localized Wannier functions has been
proved for composite bands of time-reversal symmetric systems in two and three dimensions
settling in the affirmative a long standing conjecture. In conclusion, the situation is satisfactory
as far as periodic time-reversal symmetric Hamiltonians are considered (as already mentioned
for Hamiltonians which are not time-reversal symmetric, exponentially localized Wannier
functions might not exist).

As already said above both the theory and applications of Wannier functions boosted since
Marzari and Vanderbilt [3] introduced studied and proposed methods to compute the so-called
maximally localized Wannier functions (MLWFs) defined by the fact that they minimize the
position mean-square deviation. It was conjectured in [3] that they can be chosen to be
real functions and that they have ‘optimal’ exponential localization in the sense that they
have the same exponential localization as the integral kernel of the projection operator of
the corresponding band. MLWFs proved to be an invaluable tool in the theory of electronic
properties of periodic media especially in the modern theory of electronic polarizability (see,
e.g., [18] and references therein).

In the one-dimensional case the theory of MLWFs is much more developed. It is known
[3] that MLWFs are identical to the eigenfunctions of the ‘band position’ operator and so they
are unique (up to uninteresting phases) and can be chosen to be real functions. Moreover,
the phases of the corresponding Bloch functions are related to the parallel transport procedure
[3, 19]. Recently a detailed study of Wannier functions, including their exponential decay,
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emphasizing the difference between the cases with and without inversion symmetry appeared
in [20]. In the same paper the situations in which the Wannier functions could decay slower
than the kernel of the projector are pointed out, which shows that choosing the optimal phase
is not a trivial task. Our results show that by choosing the right phase one must always obtain
an optimal decay.

Motivated by the great interest in nonperiodic structures much effort has been devoted to
extend the results about the existence of exponentially localized bases for isolated bands in
nonperiodic systems. The basic difficulty stems from the fact that for nonperiodic systems
one cannot define Wannier functions as Fourier transforms of the Bloch functions. One way
out of the difficulty is to start from the periodic case or tight-binding limit where the Wannier
functions are known to exist and use perturbation or ‘continuity’ arguments. The basic idea
is that since the obstructions are of topological origin the existence of exponentially localized
WF is stable against perturbations. Indeed, along these lines it has been possible to prove the
existence of (generalized) WF for a variety of nonperiodic systems [2, 16, 21–23]. Since in
the periodic case the obstructions to the existence of exponentially localized WF are absent
[13–15] in one dimension it was natural to conjecture [16, 24] that in one dimension WF exist
for all isolated bands irrespective of periodicity properties.

The first problem to be solved was to find an alternative definition of WF. The basic idea
goes back to Kivelson [25], who proposed to define the generalized WF as the eigenfunctions
of the ‘band position’ operator. To substantiate the idea one has to prove that the band
position operator is self-adjoint, has discrete spectrum and its eigenfunctions are exponentially
localized. For the particular case of a periodic one-dimensional crystal with one defect
Kivelson proved that the eigenfunctions of the band position operator are indeed exponentially
localized and asked for a general proof. In the general case, by a bootstrap argument, Niu
[24] argued that the eigenfunctions of the band position operator (if they exist) are at least
polynomially localized. In full generality the fact that for all isolated parts of the spectrum
the band position operator is self-adjoint, has discrete spectrum and its eigenfunctions are
exponentially localized has been proved in [26].

In this paper, we extend the results in [26] to quasi one-dimensional systems, i.e., three-
dimensional systems for which the motion extends to infinity only in one direction. In addition,
we add the result (which is new even in the strictly one-dimensional case) that (see theorem 2
for details) the ‘density’ of WF is uniformly bounded. While the main ideas of the proof
are the same as in [26] there are major differences both at the technical and physical levels.
In particular for quasi one-dimensional systems with screw symmetry the constructed WF
inherits this symmetry, a property which is very useful in computational applications. Finally
let us point out that as in the periodic case, generalized WF defined as the eigenfunctions
of the band position operator have very nice properties, e.g., they are (up to uninteresting
phases) uniquely defined and for real (i.e. time-reversal invariant) Hamiltonians they can be
chosen to be real functions and this solves for the general quasi one-dimensional case the
‘strong conjecture’ in section V of [3]. As for their exponential localization we have the
following ‘optimality’ result (see proposition 3 for a precise statement) which seems to be new
even in the one-dimensional periodic case: the eigenfunctions of the band position operator
have the same exponential localization as the integral kernel of the projection operator of the
corresponding band.

2. The results

Consider in L2(R3) the following Hamiltonian describing a particle subjected to a scalar
potential V :

3



J. Phys. A: Math. Theor. 41 (2008) 125202 H D Cornean et al

H = P2 + V, P = −i∇, sup
x∈R

3

∫
|x−y|�1

|V (y)|2 dy < ∞ (2.1)

which, as is well known (see [27]), is essentially self-adjoint on C∞
0 (R3). We have already

said in the introduction that we are interested in potentials V which tend to zero as the distance
from the Ox1-axis tends to infinity. Let us now be more precise. The notation x = (x1, x⊥)

will be used throughout the paper. For any R > 0, define

IV (R) := sup
x1∈R,|x⊥|�R

∫
|x−y|�1

|V (y)|2 dy. (2.2)

The decay assumption for V will be

lim
R→∞

IV (R) = 0. (2.3)

It is easy to see that [0,∞) ⊂ σ(H) (using a Weyl sequence argument), thus the only region
where H might have an isolated spectral island is below zero. Now suppose that σ0 is such an
isolated part of the spectrum and define

−E+ := sup{E : E ∈ σ0} < 0. (2.4)

If � is a positively oriented contour of finite length enclosing σ0, then the spectral subspace
corresponding to σ0 is

K := Ran(P0), P0 = i

2π

∫
�

(H − z)−1 dz. (2.5)

At a heuristic level, due to the fact that the wave packets from K cannot propagate in the
classically forbidden region (see (2.4) and (2.3), at negative energies the motion is confined
near the Ox1-axis, i.e. the system has a quasi one-dimensional behavior.

2.1. The technical results

The following proposition states the ‘localization’ properties of P0. On the one hand, this
gives a precise meaning to the previously discussed quasi one-dimensional character, and on
the other hand it provides some key ingredients to the proof of exponential localization of the
eigenfunctions of the band position operator.

Let a ∈ R, and let 〈X‖,a〉 be the multiplication operator corresponding to

ga(x) :=
√

(x1 − a)2 + 1, (2.6)

and 〈X⊥〉 be the multiplication operator given by

g⊥(x) :=
√

|x⊥|2 + 1. (2.7)

Proposition 1. There exist α‖ > 0, α⊥ > 0,M < ∞ such that

sup
a∈R

‖ eα‖〈X‖,a〉P0 e−α‖〈X‖,a〉 ‖� M (2.8)

and

‖ eα⊥〈X⊥〉P0 eα⊥〈X⊥〉 ‖� M. (2.9)

The proof of proposition 1 will also give values for α‖ and α⊥. In particular, α⊥ can be any
number strictly smaller than

√
E+.

We now can formulate the main technical result of this paper. To emphasize its generality
we stress that its proof only uses the decay condition (2.3) and the existence of an isolated part
of the spectrum satisfying (2.4).
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Theorem 2. Let X‖ be the operator of multiplication with x1 in L2(R3) and consider in K the
operator

X̂‖ := P0X‖P0 (2.10)

defined on D(X̂‖) = D(X‖) ∩ K. Then

(i) X̂‖ is self-adjoint on D(X̂);
(ii) X̂‖ has purely discrete spectrum;

(iii) Let g ∈ G := σ(X̂‖) be an eigenvalue, mg its multiplicity and {Wg,j }1�j�mg
an

orthonormal basis in the eigenspace of X̂ corresponding to g. Then for all β ∈ [0, 1],
there exists M1 < ∞ independent of g, j and β such that∫

R
3

e2(1−β)α‖|x1−g| e2βα⊥|x⊥||Wg,j (x)|2 dx � M1, (2.11)

where α‖ and α⊥ are the same exponents as those provided by the proof of proposition 1;
(iv) Let a ∈ R and L � 1. Denote by N(a,L) the total multiplicity of the spectrum of X̂‖

contained in [a − L, a + L]. Then there exists M2 < ∞ such that

N(a,L) � M2 · L. (2.12)

Finally, we turn to the question of optimal localization properties of our Wannier functions.
Theorem 2 provides an optimal exponential decay in the transverse direction, but in the parallel
direction it only implies a decay which is bound by the maximal decay of the resolvent in the
gap. The conjecture on optimal exponential decay, as stated in section V of [3], is whether
Wg,j ’s have the same exponential decay as the integral kernel P0(x, y) of P0 (which can be
larger than the maximal decay of the resolvent in the gap; we are indebted to one of the
referees for pointing this to us). Concerning this issue, we have the following result showing
the optimality of the ‘parallel’ decay of Wg,j at the exponential level.

Proposition 3. Assume that for all α < α0 we are given an a priori bound

sup
a∈R

‖ eα〈X‖,a〉P0 e−α〈X‖,a〉 ‖< ∞. (2.13)

Then for all α < α0 there exists M1(α), independent of g and j , such that∫
R

3
e2α|x1−g||Wg,j (x)|2 dx � M1(α). (2.14)

Remark. Here α0 is the ‘exact’ exponential decay of P0(x, y). In certain particular periodic
cases one might obtain a power-like asymptotic behavior of eα0|x1−y1|P0(x, y) with the variables
x1, y1. We cannot say anything about an eventual asymptotic behavior of eα0|x1−g|Wg,j (x).
But due to the generality of the setting, we consider our result to be optimal.

2.2. Further properties of the Wannier basis

We come now to the case when V (hence H) has additional symmetries. The point here is that
although the Wannier functions are not eigenfunctions of H, one would like them to inherit
in some sense the symmetries of H. The reason is that usually the Wannier basis is used in
order to write an effective Hamiltonian in K, and one would like this effective Hamiltonian to
inherit as much as possible the symmetries of H.

First, we comment on time-reversal invariance. Since V (x) is real, H commutes with
the anti-unitary operator induced by complex conjugation. It follows (see (2.5)) that P0 and
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X̂‖ are also real, thus the eigenfunctions of X̂‖ can be chosen to be real. Hence, theorem 2
provides us with a Wannier basis which is time-reversal invariant.

Second, we consider the so-called screw symmetry along the Ox1-axis, of much interest
in the physics of carbon nanotubes. Namely, writing

x⊥ = (r, θ), r � 0, θ ∈ [0, 2π), (2.15)

one assumes that for some θ0 ∈ [0, 2π) we have

V (x1, r, θ) = V (x1 + 1, r, θ + θ0). (2.16)

Here θ + θ0 has to be understood as modulo 2π . Defining the screw-symmetry operators T θ0
n

by (
T θ0

n f
)
(x1, r, θ) := f (x1 − n, r, θ − nθ0), (2.17)

one has a (unitary!) representation of Z in L2(R3). Taking into account (2.16) and the fact
that

[−�,T θ0
n

] = 0 (use cylindrical coordinates to prove this), one obtains[
H, T θ0

n

] = 0, (2.18)

and then from functional calculus and (2.5)[
P0, T

θ0
n

] = 0. (2.19)

In particular, this implies that the family
{
T θ0

n

}
n∈Z

induces a unitary representation of Z in K.
Moreover, from (2.10) and (2.19) one obtains[

T θ0
n , X̂‖

] = nT θ0
n . (2.20)

Let p < ∞ be the number of eigenvalues of X̂‖ in the interval [0, 1), and let {gj }pj=1 be the
distinct eigenvalues (each with multiplicity mj < ∞). We have

X̂‖Wgj ,αj
= gjWgj ,αj

, αj = 1, 2, . . . , mgj
. (2.21)

From (2.20) ) and (2.21) one obtains that for all gj , αj , n ∈ Z:

X̂‖T θ0
n Wgj ,αj

= (gj + n)T θ0
n Wgj ,αj

. (2.22)

Conversely, for every other g ∈ σ(X̂‖), choose an eigenvector Wg . We can find n ∈ Z such
that g + n ∈ [0, 1). Since X̂‖T θ0

n Wg = (g + n)T θ0
n Wg , it means that g + n must be one of the

gj ’s considered above. Therefore we proved the following corollary:

Corollary 4. The spectrum of X̂‖ consists of a union of p ladders:

G = ∪p

j=1Gj, Gj = {g : g = gj + n, n ∈ Z}, j ∈ {1, 2, . . . , p}, (2.23)

and an orthonormal basis in K can be chosen as

Wn,gj ,αj
:= Wgj +n,αj

:= T θ0
n Wgj ,αj

,

n ∈ Z, j ∈ {1, 2, . . . , p}, αj ∈ {1, 2, . . . , mgj
}.

(2.24)

It is interesting to express the effective Hamiltonian P0HP0 as an infinite matrix with
the help of the Wannier basis. For notational simplicity, we relabel the pair (gj , αj ) as
l ∈ {

1, 2, . . . , Nc = ∑p

j=1 mgj

}
and write the Wannier basis as {Wn,l}n∈Z,l∈{1,2,...,Nc}. Note

that Nc is nothing but the number of Wannier functions per unit cell [0, 1). Let

h
θ0
l,k(m, n) := 〈Wm,l,HWn,k〉. (2.25)

The important fact is that in spite of a rotation with an angle θ0 for which it might happen that
θ0
2π

to be irrational, from (2.18) and (2.24) one obtains (with the usual abuse of notation)

h
θ0
l,k(m, n) = h

θ0
l,k(m − n). (2.26)

6



J. Phys. A: Math. Theor. 41 (2008) 125202 H D Cornean et al

Then a standard computation gives the effective Hamiltonian as an operator in (l2)Nc which is
of standard translation invariant tight-binding type:(

h
θ0
effφ

)
l
(m) :=

∑
k,n

h
θ0
l,k(m − n)φk(n). (2.27)

This is another consequence of the quasi one-dimensional character of the motion for negative
energies. More precisely, it reflects the fact that for arbitrary values of θ0, since T θ0

n is a unitary
representation of Z, one can still develop a Bloch-type analysis but with a more complicated
form of ‘Bloch’ functions:

	k(x) = eikx1uk(x), uk(x) = T θ0
n uk(x). (2.28)

However, due to the complicated symmetry of the resulting Bloch functions (which does not
allow us to represent the fiber Hamiltonian as a differential operator on the unit cell with
‘simple’ boundary conditions), the analysis gets much harder. The Bloch analysis reduces to
the standard one (with a larger unit cell) for rational values of θ0

2π
.

3. Proofs

This section is devoted to the proof of proposition 1, theorem 2 and proposition 3. A certain
number of unimportant finite positive constants appearing during the proof will be denoted by
M.

One of the key ingredients in the proofs is the exponential decay of the integral kernel of
the resolvent of Schrödinger operators. This is an elementary result in the Combes–Thomas–
Agmon theory of weighted estimates. We summarize the needed result in

Lemma 5. Let W be a potential such that supx∈R3

∫
|x−y|�1 |W(y)|2 dy < ∞. Define

K := P2 + W(x) as an operator sum, and let h be a real function satisfying

h ∈ C∞(R3), sup
x∈R

3

{|∇h(x)| + |�h(x)|} = m < ∞. (3.1)

Fix z ∈ ρ(H). Then there exists αz > 0 such that

‖ eαzh(K − z)−1 e−αzh‖ � M, (3.2)

‖ eαzhPj (K − z)−1 e−αzh‖ � M, (3.3)

where Pj = −i ∂
∂xj

, j ∈ {1, 2, 3}.

Without giving the details of the proof of lemma 5, for later use we write a key identity in
(3.5): under the condition

1 + αz(±iP · ∇h ± i∇h · P − αz|∇h|2)(K − z)−1 invertible (3.4)

one has

e±αzh(K − z)−1 e∓αzh = (K − z)−1[1 + αz(±iP · ∇h ± i∇h · P − αz|∇h|2)(K − z)−1]−1.

(3.5)

Then (3.4) holds true if for example αz > 0 is small enough.
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3.1. Proof of proposition 1

Consider � in (2.5) as a contour of finite length enclosing σ0 and satisfying

dist(�, σ (H)) = 1
2 dist(σ0, σ (H)\σ0). (3.6)

Then since |∇ga| � 1, |�ga|2 � 2, the estimate (2.8) follows directly from lemma 5 by taking
α‖ sufficiently small such that for all z ∈ �

‖α‖(iP · ∇ga + i∇ga · P − α‖|∇ga|2)(K − z)−1‖ � b < 1.

We now prove (2.9). If R > 0, define

HR = −� + (1 − χR)V, (3.7)

where

χR(x) =
{

1 for |x⊥| � R

0 for |x⊥| > R
. (3.8)

From (2.3) it follows that

lim
R→∞

inf σ(HR) = 0.

In particular, for sufficiently large R, (HR − z)−1 is analytic inside �. Since H −HR = χRV ,
then using resolvent identities we obtain

(H − z)−1 = (HR − z)−1 − (HR − z)−1χRV (HR − z)−1

+ (HR − z)−1χRV (H − z)−1χRV (HR − z)−1. (3.9)

From (2.5), (3.9) and the fact that (HR − z)−1 is analytic inside � one has

P0 = i

2π

∫
�

(HR − z)−1χRV (H − z)−1χRV (HR − z)−1. (3.10)

Note that for all α > 0

sup
x∈R3

∫
|x−y|�1

|(eαg⊥χRV )(y)|2 dy < ∞. (3.11)

Take now α⊥ > 0 such that (3.4) holds true for all z ∈ �,K = HR, h = g⊥ and αz = α⊥.
That is let us suppose that

1 + α⊥(±iP · ∇g⊥ ± i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1 is invertible (3.12)

uniformly on �. Then we can rewrite P0 as

P0 = e−α⊥〈X⊥〉
{

i

2π

∫
�

[eα⊥〈X⊥〉(HR − z)−1 e−α⊥〈X⊥〉]

× [eα⊥g⊥χRV (H − z)−1][eα⊥g⊥χRV (HR − z)−1]

× [1 + α⊥(−iP · ∇g⊥ − i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1]−1 dz

}
e−α⊥〈X⊥〉. (3.13)

Due to (3.11) the operator under the integral sign is uniformly bounded in z and the proof of
proposition 1 is completed provided we can show why we can choose α⊥ as close to

√
E+ as

we want. The argument is as follows. Choose 0 � α⊥ <
√

E+. Choose a contour � which
is very close to σ0, at a distance δ > 0, infinitesimally small. Using the spectral theorem
(or in this case the Plancherel theorem), there exists δ small enough such that the following
estimates hold true:

sup
z∈�

‖(P2 − z)−1‖ � const, sup
z∈�

max
j∈{1,2,3}

‖Pj (P2 − z)−1‖ � const. (3.14)
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Hence, we can find δ small enough and R large enough such that the operator in (3.12) is
invertible if

1 + α⊥(±iP · ∇g⊥ ± i∇g⊥ · P − α⊥|∇g⊥|2)(P2 − Re(z))−1 is invertible (3.15)

uniformly on �. Now the operator in (3.15) is invertible if

1 ± iα⊥(P2 − Re(z))−
1
2 (P · ∇h + ∇h · P)(P2 − Re(z))−

1
2

−α2
⊥(P2 − Re(z))−

1
2 |∇h|2(P2 − Re(z))−

1
2 (3.16)

is invertible (by a resummation of the Neumann series and analytic continuation). Now assume
that uniformly on � we have

0 < α2
⊥(P2 − Re(z))−

1
2 |∇h|2(P2 − Re(z))−

1
2 � α2

⊥
−Re(z)

< 1,

which can be achieved if α2
⊥ < E+ and δ is chosen to be small enough. Define

S := (
1 − α2

⊥(P2 − Re(z))−
1
2 |∇h|2(P2 − Re(z))−

1
2
)− 1

2 ,

and

T = T ∗ := S(P2 − Re(z))−
1
2 (P · ∇h + ∇h · P)(P2 − Re(z))−

1
2 S.

Then the operator in (3.16) is invertible if 1 ± iα⊥T is invertible, which is always the case:

(1 ± iα⊥T )−1 = (1 ∓ iα⊥T )(1 + α2
⊥T 2)−1.

Therefore proposition 1 is proved.

3.2. Proof of theorem 2

Proof of (i). First we recall an older result (see, e.g., [2, 28, 29]), according to which
the commutator [X‖, P0] defined on D(X‖) has a bounded closure on L2(R3). We seek an
approximate resolvent of X̂‖ by defining for µ > 0 the operator

R̂±µ = P0(X‖ ± iµ)−1P0. (3.17)

Since one can rewrite R̂±µ as

R̂±µ = (X‖ ± iµ)−1P0 + (X‖ ± iµ)−1[X‖, P0](X‖ ± iµ)−1P0

it follows that R̂±µK ⊂ D(X̂‖) and by a straightforward computation (as operators in K)

(X̂‖ ± iµ)R̂±µ = P0(X‖ ± iµ)P0(X‖ ± iµ)−1P0 = 1K + Â±µ (3.18)

with

Â±µ = P0[X‖, P0](X‖ ± iµ)−1P0. (3.19)

Since [X‖, P0] is bounded and ‖(X‖ ± iµ)−1‖ � 1
µ

, it follows that for sufficiently large µ:

‖Â±µ‖ � 1
2 . (3.20)

Then again as operators in K:

(X̂ ± iµ)R̂±µ(1K + Â±µ)−1 = 1K. (3.21)

This implies that X̂ ± iµ is surjective on R̂±µ(1K + Â±µ)−1K ⊂ D(X̂). By the fundamental
criterion of self-adjointness [27] X̂ is self-adjoint in K on D(X̂). In addition, from (3.21) one
obtains the following formula for the resolvent of X̂‖:

(X̂‖ ± iµ)−1 = R̂±µ(1K + Â±µ)−1. (3.22)

9
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Proof of (ii). We will show that R̂±µ is compact in K which implies (see (3.22) that X̂‖
has compact resolvent, thus purely discrete spectrum. Consider a cut-off function φN which
equals 1 if |x| � N and is zero if |x| � 2N . For N � 1 we can decompose

R̂±µ = P0(X‖ ± iµ)−1φNP0 + P0(X‖ ± iµ)−1(1 − φN)P0. (3.23)

Writing

φNP0 = {φN(P2 + 1)−1}{(P2 + 1)P0}
we see that φNP0 is compact (even Hilbert–Schmidt) in L2(R3) (the first factor is Hilbert–
Schmidt while the second one is bounded). Now if 0 < α is small enough, we know that
eαg⊥P0 is bounded (see (2.9). Since

lim
N→∞

‖(X‖ ± iµ)−1(1 − φN) e−αg⊥‖ = 0,

we have shown

lim
N→∞

‖R̂±µ − P0(X‖ ± iµ)−1φNP0‖ = 0,

thus R̂±µ equals the norm limit of a sequence of compact operators, therefore it is compact.
Accordingly, since the self-adjoint operator X̂‖ has compact resolvent it has purely discrete
spectrum [27]:

σ(X̂‖) = σdisc(X̂‖) =: G, (3.24)

and the proof of the second part of theorem 2 is completed.

Proof of (iii). Now we will consider the exponential localization of the eigenfunctions of X̂‖.
Let g ∈ G be an eigenvalue, mg its multiplicity and Wg,j , 1 � j � mg , be an orthonormal
basis in the eigenspace of X̂‖ corresponding to g. We shall prove that uniformly in g and j

‖ eα‖〈X‖,g〉Wg,j‖ � M (3.25)

and

‖ eα⊥〈X⊥〉Wg,j‖ � M. (3.26)

Taking (3.25) and (3.26) as given, one can easily obtain (2.11) by a simple convexity argument:
the function f (x) = a1−xbx, a, b > 0, is convex on R, and for 0 � β � 1 one has

β e2α‖ga(x) + (1 − β) e2α⊥g⊥ � e2(1−β)α‖ga(x) e2βα⊥g⊥ , (3.27)

which together with (3.25) and (3.26) proves (2.11) with M1 = M2. Since (3.26) follows
directly from (2.9) and Wg,j = P0Wg,j we are left with the proof of (3.25).

Although the proof of (3.25) mimics closely the proof in the one-dimensional case [26],
we give it here for completeness. In order to emphasize the main idea of the proof let us
recall one of the simplest proofs of the exponential decay of the eigenfunctions of Schrödinger
operators corresponding to discrete eigenvalues (assuming that the potential V is bounded and
has compact support). Namely assume that for some E > 0 we have (−� + V + E)	 = 0,
which can be rewritten as

	 = −(−� + E)−1V 	. (3.28)

Since for |α| <
√

E, eα|·|(−� + E)−1 e−α|·| and eα|·|V are bounded:

	 = −e−α|·|{eα|·|(−� + E)−1 e−α|·|} (eα|·|V )	

which proves the exponential localization of 	. The main idea in proving (3.25) is to rewrite
the eigenvalue equation for X̂‖ in a form similar to (3.28) and then to use (2.8).

10
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Let us start with some notation. If b > 0 (sufficiently large) and a ∈ R, define

fa,b(x) := bf

(
x1 − a

b

)
(3.29)

where f is a real C∞
0 (R) cut-off function satisfying 0 � f (y) � 1 and

f (y) =
{

1 for |y| � 1
2

0 for |y| � 1
.

Define the function ha,b by

ha,b(x) := x1 − a + ifa,b(x). (3.30)

Note that by construction, ha,b depends only on x1 and obeys

|ha,b(x)| � b

2
. (3.31)

Moreover, its first two derivatives are uniformly bounded:

sup
x∈R

3

sup
a∈R

sup
b�1

{|∇ha,b(x)| + |�ha,b(x)|} = K < ∞. (3.32)

The eigenvalue equation for Wg,j reads P0(X̂‖ − g)P0Wg,j = 0. Using (3.30) it can be
rewritten as

P0hg,bP0Wg,j = iP0fg,bP0Wg,j . (3.33)

We now prove that P0hg,bP0 is invertible. Like in the proof of self-adjointness of X̂‖ we
compute

P0h
−1
g,bP0P0hg,bP0 = 1K + P0h

−1
g,b[P0, hg,b]P0. (3.34)

The key remark is that
[
P0, hg,b

]
is bounded. Indeed, we have the identity

[P0, hg,b] = − 1

2π

∫
�

(H − z)−1{P · ∇hg,b + ∇hg,b · P}(H − z)−1 dz

= − 1

2π

∫
�

(H − z)−1{−i�hg,b + 2∇hg,b · P}(H − z)−1 dz. (3.35)

It follows that [P0, hg,b] is uniformly bounded in g ∈ R and b � 1 (see (3.32). Taking into
account (3.31) one obtains that the operator

B̂g,b = P0h
−1
g,b[P0, hg,b]P0 : K → K (3.36)

satisfies

‖B̂g,b‖ � 1
2 (3.37)

if b � b0 for some large enough b0 < ∞. It follows that 1 + B̂g,b is invertible and then the
eigenvalue equation (see (3.33), (3.34) and (3.36) takes the form

Wg,j = i(1 + B̂g,b)
−1P0h

−1
g,bP0fg,bP0Wg,j (3.38)

which is the analog of (3.28). By construction (see the definition of fg,b in (3.29)

‖ eα‖〈X‖,g〉fg,b‖ � b eα‖(b+1).

Moreover,

eα‖〈X‖,g〉P0h
−1
g,bP0 e−α‖〈X‖,g〉 = {eα‖〈X‖,g〉P0 e−α‖〈X‖,g〉}h−1

g,b{eα‖〈X‖,g〉P0 e−α‖〈X‖,g〉}
11
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is bounded due to (2.8). Thus, the only thing that remains to be proved is the existence of a b
large enough such that the following bound holds:

sup
g∈R

‖ eα‖〈X‖,g〉(1 + B̂g,b)
−1 e−α‖〈X‖,g〉‖ < ∞. (3.39)

Using the Neumann series for (1 + B̂g,b)
−1, it follows that it suffices to prove that

lim
b→∞

sup
g∈R

‖ eα‖〈X‖,g〉B̂g,b e−α‖〈X‖,g〉‖ = 0. (3.40)

Since (see (3.31) limb→∞
∥∥h−1

g,b

∥∥ = 0 (uniformly in g ∈ R), for (3.40) to hold true it is
sufficient to show

sup
g∈R

‖ eα‖〈X‖,g〉[P0, hg,b] e−α‖〈X‖,g〉‖ � const. (3.41)

But this easily follows from (3.35), (3.32), (3.2) and (3.3) where we take K = H,αz = α‖
and h = gg . The proof of (iii) is concluded.

Proof of (iv). We start with a technical result:

Lemma 6. Fix 0 � α⊥ <
√

E+. Then there exists a bounded operator D such that

P0 = e−α⊥〈X⊥〉(P2 + 1)−1D. (3.42)

Proof. We use the notation and ideas of proposition 1, and we rewrite P0 in a convenient form.
First, for R > 0 we have

(H − z)−1 = (HR − z)−1 − (HR − z)−1χRV (H − z)−1.

Second, choose � close enough to σ0 and R large enough such that (HR − z)−1 becomes
analytic inside � and (3.12) holds true for all z ∈ �. Then we can write

P0 = −e−α⊥〈X⊥〉 i

2π

∫
�

(HR − z)−1[1 + α⊥(iP · ∇g⊥ + i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1]−1

× eα⊥g⊥χRV (H − z)−1 dz.

Now by the closed graph theorem we have that (P2 + 1)(HR + 1)−1 is bounded (here R is large
enough such that (−∞,−1/2) ⊂ ρ(HR)), and together with the spectral theorem

sup
z∈�

‖(P2 + 1)(HR − z)−1‖ < ∞.

Use this in (3.43) and we are done.
We now have all the necessary ingredients for proving the last statement of our theorem.

For every L > 0 and a ∈ R, denote by χL,a the characteristic function of the slab
{x : |x1 − a| � L}. Then define the operator B := χL,aP0. Using (3.42) let us show
that B is Hilbert–Schmidt and, moreover, uniformly in a ∈ R we have

‖B‖2
2 � M · L, (3.44)

for some M < ∞. Indeed, since B = χL,a e−α⊥〈X⊥〉(−� + 1)−1D, a direct computation using
the explicit formula for the integral kernel of the free Laplacian gives

‖χL,a e−α⊥〈X⊥〉(P2 + 1)−1‖2
2 � const · L.

It follows that the operator χL,aP0χL,a = BB∗ is trace class and

|Tr(χL,aP0χL,a)| � ‖B‖2
2 � M · L (3.45)

for some M < ∞ independent of L and a.

12
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Now let P
L,a
0 be the orthogonal projection onto the subspace spanned by those Wg,j for

which g ∈ [a − L, a + L]:

P
L,a
0 :=

∑
|g−a|�L

mg∑
j=1

〈·,Wg,j 〉Wg,j . (3.46)

We can choose A sufficiently large such that (3.25) implies∫
|x1−a|�A

|Wg,j (x)|2 dx � 1

2
(3.47)

uniformly in a and g ∈ [a − L, a + L]. Since P0 � P
L,a
0 , from (3.45) one obtains

M · (L + A) � Tr(χL+A,aP0χL+A,a) � Tr
(
χL+A,aP

L,a
0 χL+A,a

)
=

∑
|g−a|�L

mg∑
j=1

∫
R

3
χL+A,a(x)|Wg,j (x)|2 dx

�
∑

|g−a|�L

mg∑
j=1

1

2
= 1

2
N(a,L), (3.48)

where in the last inequality we used (3.47). In particular, if L � 1, then uniformly in a ∈ R

we have

N(a,L) � 2M · (1 + A)L

and the proof is completed.

3.3. Proof of proposition 3

The only thing we have to prove is that (3.41) holds true for α‖ replaced by any α < α0, where
α0 is the a priori given, ‘exact’ exponential localization.

We introduce the multiplication operator given by {eα|·−t |f }(x) := eα|x1−t |f (x). We start
by noticing that due to the bound e±α(

√
s2+1−|s|) � eα we can replace (2.13) with

sup
t∈R

‖ eα|·−t |P0 e−α|·−t |‖ < ∞. (3.49)

The same replacement can be done in (3.41). Now the integral kernel A(x, y) of the operator
A := eα|·−g|[P0, hg,b]e−α|·−g| equals

A(x, y) = P0(x, y) eα(|x1−g|−|y1−g|)(hg,b(y) − hg,b(x)). (3.50)

We consider A as an operator on L2(R3) = ⊕
p∈Z

L2([p, p + 1] × R
2). Let χp be the

characteristic function of the slab [p, p + 1] × R
2. We have that App′ := χpAχp′ is a

bounded operator between L2([p′, p′ + 1] × R
2) and L2([p, p + 1] × R

2), and we can write
A = {App′ }p,p′∈Z. We will bound the norm of A with a Schur–Holmgren-type estimate (see
lemma 7):

‖A‖ �

⎛
⎝sup

p′∈Z

∑
p∈Z

‖App′ ‖
⎞
⎠

1
2
⎛
⎝sup

p∈Z

∑
p′∈Z

‖App′ ‖
⎞
⎠

1
2

. (3.51)

For 0 � x1, y1 � 1, the kernel of App′ can be written as

App′(x, y) = P0(x1 + p, x⊥; y1 + p′, y⊥) eα(|x1+p−g|−|y1+p′−g|)(hg,b(y1 + p′) − hg,b(x1 + p))

= P0(x1 + p, x⊥; y1 + p′, y⊥) eα(|x1+p−g|−|y1+p′−g|)(hg,b(p
′) − hg,b(p))

13
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+ P0(x1 + p, x⊥; y1 + p′, y⊥) eα(|x1+p−g|−|y1+p′−g|)(hg,b(y1 + p′) − hg,b(p
′))

+ P0(x1 + p, x⊥; y1 + p′, y⊥) eα(|x1+p−g|−|y1+p′−g|)(−hg,b(x1 + p) + hg,b(p))

=: A(1)
pp′(x, y) + A(2)

pp′(x, y) + A(3)
pp′(x, y). (3.52)

The last two kernels can be analyzed with the same methods as the first one, thus we only
estimate the norm of A

(1)
pp′ . The crucial observation is that we can write this operator as a

product of three operators having the corresponding kernels:

A(1)
pp′(x, y) = eα(|x1+p−g|−|p−g|)

· eα(|p−g|−|p′−g|)P0(x1 + p, x⊥; y1 + p′, y⊥)(hg,b(p
′) − hg,b(p))

· e−α(|y1+p′−g|−|p′−g|). (3.53)

The kernel in the middle corresponds to the operator χpP0χ
′
p times some coefficients depending

on p, p′.
Using the triangle inequality to bound the exponentials, and (3.32) in order to write

|hg,b(y) − hg,b(x)| � K|x1 − y1|, we have∥∥A
(1)
pp′

∥∥ � K e2α eα|p−p′ ||p − p′| · ‖χpP0χ
′
p‖.

Using t = p′ and (α + α0)/2 in (3.49) we obtain

‖χpP0χ
′
p‖ � C e−(α+α0)|p−p′ |/2,

thus ∥∥A
(1)
pp′

∥∥ � C ′|p − p′|e−(α0−α)|p−p′ |/2

which is summable in the sense of (3.51). The same strategy can be applied in the case of
A

(2)
pp′ and A

(3)
pp′ . The last thing to be done is to prove the Schur–Holmgren estimate.

Lemma 7. The estimate (3.51) holds true.

Proof. Let ψ ∈ L2(R3) with compact support and ‖ψ‖ = 1. We write

‖Aψ‖2 =
∑
p∈Z

‖χpAψ‖2. (3.54)

But

‖χpAψ‖ �
∑
p′∈Z

√‖App′ ‖√‖App′ ‖‖χp′ψ‖ �

⎧⎨
⎩

∑
p′∈Z

‖App′ ‖
⎫⎬
⎭

1
2
⎧⎨
⎩

∑
p′∈Z

‖App′ ‖‖χp′ψ‖2

⎫⎬
⎭

1
2

�
{

sup
s∈Z

∑
t∈Z

‖Ast‖
} 1

2

⎧⎨
⎩

∑
p′∈Z

‖App′ ‖‖χp′ψ‖2

⎫⎬
⎭

1
2

(3.55)

where in the second inequality we used Cauchy–Schwarz with respect to p′. Introduce this in
(3.54) and the bound follows after the use of

∑
p′∈Z

‖χp′ψ‖2 = 1. �
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